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In a previous series of papers a theory of blossoming was developed for spaces
of functions on an interval I spanned by the constant functions and functions
81 , ..., 8n , where 8$1 , ..., 8$n span an extended Chebyshev space. This theory was
then used to construct a generalisation of the Bernstein basis and the de Casteljau
algorithm. Also considered were functions defined to be piecewise in such spaces,
leading to generalisations of B-splines and the de Boor algorithm. Here we relax the
condition that 8$1 , ..., 8$n span an extended Chebyshev space, while retaining all the
nice properties of the earlier theory. This allows us to include a large variety of new
spaces, including spaces of polynomials which have been found to be successful for
tension methods for shape-preserving interpolation. � 2001 Academic Press
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1. INTRODUCTION

In computer-aided design it is extremely useful to design curves using the
space Pn of polynomials of degree n, employing the Bernstein basis, Be� zier
points, and the de Casteljau algorithm. More generally we can use spline
functions, employing the B-spline basis and the de Boor algorithm. An
elegant tool for unifying and clarifying these concepts is the notion of
blossoming [20]. In a series of papers [13, 15, 18, 19], these ideas have
been extended from Pn to a much larger class of spaces. Any such space is
spanned by the constant functions and functions 81 , ..., 8n on an interval
I, where 8$1 , ..., 8$n span an extended Chebyshev space. A generalisation of
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the notion of blossoming is then used to derive generalisations of the
Berntein and B-spline bases with de Casteljau and de Boor algorithms and
optimal shape preserving properties.

A different type of generalisation of Pn was considered first by Costantini
in [3], then by Kaklis and Pandelis in [10]. Motivated by tension
methods for shape-preserving interpolation, they considered the space
spanned by the functions [1, x, x2+m, (1&x)2+m] on [0, 1], where m is
any positive integer. This space has proved fruitful for shape-preserving
interpolation methods (see [5], and the survey [4]). However it does not
fall under the theory discussed above because the functions [1, x1+m,
(1&x)1+m] do not span an extended Chebyshev space on [0, 1] (unless
m=1), since functions in the space may have too many zeros at 0 or 1.

The purpose of this paper is to extend the theory discussed in the first
paragraph to include the space considered by Costantini and by Kaklis and
Pandelis. More generally it includes the space spanned by the functions
[1, x, ..., xn&2, xn&1+m1, (1&x)n&1+m2] on [0,1], where n, m1 , m2 are
positive integers, which reduces to Pn when m1=m2=1. This case is
discussed in detail in Section 4, where examples are given to show how m1

and m2 act as tension parameters.
The general theory is developed in Section 2. In Section 2.1 we define the

notion of blossoming without the previously required condition that the
vectors 8( j) (x)=(8 ( j)

1 (x), ..., 8 ( j)
n (x))T, j=1, ..., n, are linearly independent

for all x in I. Under the much weaker condition that 8$(x), ..., 8(n&1) (x),
8(s) (x) are linearly independent for some s�n, it is shown in the rest of
Section 2 that Bernstein and B-spline bases can still be defined with the
usual properties including de Casteljau and de Boor algorithms. Then in
Section 3 we construct a very large class of spaces satisfying the theory of
Section 2 by considering kernels of differential operators associated with
weight functions, generalising a classical construction of extended
Chebyshev spaces. The spaces discussed in Section 4 are special cases of
this construction.

2. QUASI-CHEBYSHEV FUNCTIONS AND BLOSSOMING

Throughout the paper, given a function 8 defined on a real interval I,
with values in an affine space, the osculating flat of order l of 8 at a point
x (at which 8 is l times differentiable) denotes the affine flat passing
through 8(x) and the direction of which is the linear space spanned by its
first l derivatives at x. We denote it by Oscl 8(x), so that:

Oscl 8(x) :=[8(x)+*1 8$(x)+ } } } +*l 8(l) (x) | *1 , ..., *l # R].
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For simplicity, assume now that 8=(81 , ..., 8n)T: I � Rn is infinitely many
times differentiable. In [13], such a function is said to be a Chebyshev func-
tion of order n on I when the space spanned by the n functions 8$1, ..., 8$n
is an n-dimensional extended Chebyshev space on I, i.e., when any nonzero
element of this space has at most (n&1) zeros (counted with multiplicities)
in I. This property was proved to be equivalent to the following two
simultaneous ones ([18]):

(1) for all x # I, the n derivative vectors 8$(x), ..., 8(n) (x) are linearly
independent,

(2) for all distinct {1 , ..., {r # I and for all positive integers +1 , ..., +r

such that �r
i=1 +i=n, the r osculating flats Oscn&+i

8({i) intersect at a
single point.
Whenever the two n-tuples (x1 , ..., xn) and ({1 , ..., {1

+1 times

, ..., {r , ..., {r

+r times

) are equal

up to a permutation, the latter single point is labelled as .(x1 , ..., xn). This
provides a function .: I n � Rn called the blossom of 8. The blossom
satisfies the following three properties:

(i) . is symmetric on I n,

(ii) .(x, ..., x)=8(x) for all x # I,

(iii) . is pseudo-affine with respect to each variable, in the sense that,
for any x1 , ..., xn&1 # I, the point .(x1 , ..., xn&1 , x), x # I, varies in a strictly
monotonic way along an affine line.

These three properties are essential for developing the basic algorithms
of geometric design. The first two ones are obvious to obtain from the
definition, the third one was proved in [18].

Let us now focus on the elementary case n=2. Then, 8=(81 , 82)T:
I � R2 is a Chebyshev function of order 2 on I iff:

for all x # I, 8$(x), 8"(x) are linearly independent, (2.1)

for all x, y # I, x{ y, 8$(x), 8$( y) are linearly independent. (2.2)

If (2.1) and (2.2) are satisfied, then the blossom .=(.1 , .2) of 8 is defined
by:

[.(x, y)] :=Osc1 8(x) & Osc1 8( y), .(x, x) :=8(x), (2.3)

for all distinct x, y # I. Consider the function 8(x) :=(x, x4)T, x # R. Then,
for all x, y # R,

det(8$(x), 8"(x))=12x2, det(8$(x), 8$( y))=4( y&x) (x2+xy+ y2).

(2.4)
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Equalities (2.4) show that 8 is a Chebyshev function of order 2 on
]0, +�[. According to (2.3), one can easily prove that its blossom on
]0, +�[_]0, +�[ is given by:

.1 (x, y)=
3
4

x3+x2y+xy2+ y3

x2+xy+ y2 , .2 (x, y)=3
x3y3

x2+xy+ y2 . (2.5)

On the other hand, due to the first part of (2.4), 8 cannot be a Chebyshev
function on any interval I containing 0. Nevertheless, due to the second
part of (2.4), property (2.2) is satisfied on the whole real line. Therefore the
two tangent lines Osc1 8(x) and Osc1 8( y) do intersect at a single point
whatever the points x, y # R, x{ y. This observation makes it natural to
define the blossom . by formulae (2.3) not only on ]0, +�[2, but even
on R2. Explicitly, .(x, y) is then given by (2.5) for all (x, y) # R2"[(0, 0)]
and by .(0, 0) :=(0, 0). The strict convexity of the parametric curve
defined by 8 guarantees that, for any fixed a # R, the point .(a, x), x # R,
varies in a strictly monotonic way along the tangent line Osc1 8(a). Since
properties (i) and (ii) mentioned above are obviously valid on R, the
blossom . satisfies all expected properties on R2.

This very simple example suggests that, more generally, it might be
possible to develop the blossoming principle without assuming the linear
independence of the first n derivatives, that is beyond the strict framework
of extended Chebyshev spaces. This is the problem we will address in this
section.

2.1. Quasi-Chebyshev Functions

Throughout the section, A denotes a given n-dimensional real affine
space and I a real interval. From now on, inside a tuple, the notation x+

will mean x, ..., x
+ times

.

Definition 2.1. Consider a function 8: I � A. If n�2, 8 will be said
to be a quasi-Chebyshev function of order n on I if it is Cn&1 on I and, if,
for all distinct {1 , ..., {r # I, and all positive integers +1 , ..., +r such that
�r

i=1 + i=n, the intersection �r
i=1 Oscn&+i

8({i) consists of a single point.
If n=1, 8 will be said to be a quasi-Chebyshev function of order 1 on I
if it is C0 on I and if the point 8(x), x # I, varies strictly monotonically
along the affine line A.

Then, the function .: I n � A defined by:

[.(x1 , ..., xn)] := ,
r

i=1

Oscn&+i
8({i), (2.6)
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for all n-tuples (x1 , ..., xn) # I n which are equal to ({1
+1, ..., {r

+r) up to a per-
mutation, will be called the blossom of 8.

A few comments on these definitions. Assuming that n�2, differen-
tiability of order n&1 is the minimum assumption to require in order to
give sense to all the osculating flats possibly involved in (2.6). Of course,
when r=1, then +1=n and the corresponding intersection reduces to
Osc0 8({1), which always consists of the single point 8({1). We could
therefore have required r to be greater than or equal to 2 in Definition 2.1.
It also results from the latter observation that, when restricted to the
diagonal of In, the blossom . of a quasi-Chebyshev function 8 of order n
gives the function 8 itself. Moreover, . is by nature a symmetric function
on I n.

Proposition 2.2. Assume that 8: I � A is a quasi-Chebyshev function
of order n on I (n�2). Then, given any two distinct points a, b # I, and any
integer i, 0<i<n, the n derivative vectors 8$(a), ..., 8(i) (a), 8$(b), ...,
8(n&i) (b) are linearly independent.

Proof. From Definition 2.1, we know the existence of the point

[.(an&i, b i)] :=Osci 8(a) & Oscn&i 8(b).

This implies the existence of unique real numbers *1 , ..., *i , +1 , ..., +n&i such
that

8(b)&8(a)=*1 8$(a)+ } } } +* i 8(i) (a)++1 8$(b)+ } } } ++n&i 8(n&i) (b),

which proves that the n vectors 8$(a), ..., 8(i) (a), 8$(b), ..., 8 (n&i) (b) form a
basis of the direction of the affine space A. K

Corollary 2.3. Suppose that 8: I � A is a quasi-Chebyshev function of
order n on I. Then, given any point a # I, and any integer l�n&1, the
osculating flat Oscl 8(a) is l-dimensional. Moreover,

8(x) � Oscn&1 8(a) for x # I"[a]. (2.7)

In particular, the affine space aff(Im 8) spanned by the image of 8 is equal
to A.

Proof. For n=1, (2.7) results from the strict monotonicity of 8. Sup-
pose n�2. It follows from Proposition 2.2 that the first n&1 derivatives
8$(a), ..., 8(n&1) (a) are linearly independent at any point a # I, whence the
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result on the dimension of all osculating flats of order at most n&1. Fixing
the point a # I, the function N defined by

N(x) :=det[8$(a), ..., 8(n&1) (a), 8(x)&8(a)], x # I, (2.8)

is Cn&1 on I like 8. According to Proposition 2.2, its first derivative

N$(x)=det[8$(a), ..., 8(n&1) (a), 8$(x)],

vanishes only for x=a. Since N(a)=0, Rolle's theorem allows us to con-
clude that N(x){0 for x{a, which proves (2.7). Since Oscn&1 8(a) is an
(n&1)-dimensional affine subspace of A, the equality aff(Im 8)=A

follows. K

Picking an affine frame A0 , ..., An in A, any function 8: I � A can be
written as:

8(x)= :
n

i=0

8 i (x) A i, :
n

i=0

8i (x)=1, x # I. (2.9)

In the following, we shall denote by E(8) the associated space E(8)
:=span(80 , 81 , ..., 8n)=span(1, 81 , ..., 8n), which is independent of the
chosen frame. Moreover, we call E(8)-functions all functions with values in
a finite dimensional affine space, all the coordinates of which (w.r. to any
frame) belong to the space E(8).

Suppose that 8 is a quasi-Chebyshev function of order n on I. Then,
aff(Im 8) being n-dimensional (Corollary 2.3), the associated space E(8)
is (n+1)-dimensional. Any E(8)-function F being the image F=h b 8 of 8
under a unique affine map h, its blossom f will naturally be defined by
f :=h b ..

Examples 2.4. (i) Let us examine the particular case when n=2.
Then a necessary and sufficient condition for a C 1 function 8: I � A to be
a quasi-Chebyshev function is that the determinant det[8$(x), 8$( y)]
never vanishes on I 2"[(x, x) | x # I]. When the latter property holds, an
argument of continuity proves det[8$(x), 8$( y)] to keep a constant strict
sign for x, y # I, x< y. Consequently, the planar parametric curve defined
by 8 is a strictly convex one. It easily follows that, for a fixed a # I, the
point .(a, x) varies in a strictly monotonic way along the tangent line
Osc1 8(a). According to Definition 2.1, .(a, .) is thus a quasi-Chebyshev
function of order 1 on I.

(ii) Given three positive integers m, p, q, consider the function
8: R � R3 defined by 8(x) := (xm, xm+ p, xm+ p+q)T. We know that 8 is a
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Chebyshev function of order 3 on ]0, +�[ (see [14]). Now, none of the
vectors 8$(0), 8"(0), 8$$$(0) is equal to zero iff m+ p+q=3. Consequently,
as long as m+ p+q>3, 8 cannot be a Chebyshev function on any inter-
val containing 0. The condition m+ p+q=3 means that 8(x)=
(x, x2, x3)T, in which case 8 is a Chebyshev function on the whole real line
and we are just working with the ordinary blossoms in the space E(8)=P3

of polynomials of degree at most 3.
On the other hand, the two vectors 8$(0), 8"(0) are linearly independent

iff m= p=1. Suppose now 8(x)=(x, x2, xq+2)T, with q>1. Then, one can
check that, for any distinct positive x, y, Osc28(0) & Osc2 8(x) &
Osc28( y), Osc2 8(0) & Osc18(x), and Osc1 8(0) & Osc2 8(x) all consist of
a single point. Therefore, 8 is a quasi-Chebyshev function on [0, +�[.
We will see in the next section that, when q=2k+1, 8 is in fact a quasi-
Chebyshev function on the whole real line. This is no longer true when
q=2k. For instance, if 8(x)=(x, x2, x4)T, it is easy to check that, for all
x{0, 8(&3x) # Osc2 8(x), which contradicts property (2.7) on R.

2.2. Subblossoms

In this subsection we consider a given quasi-Chebyshev function 8 of
order n�2 on I. Then, fixing a point a in I, we define

8� (x) :=.(a, xn&1), x # I. (2.10)

Theorem 2.5. Assume 8 to be C� on I. Let us suppose that there exists
an integer s�n such that the n derivative vectors 8$(a), ..., 8(n&1) (a),
8(s) (a) are linearly independent. Then 8� is a C� quasi-Chebyshev function
of order n&1 on I with values in Oscn&1 8(a). Its blossom .~ is defined by:

.~ (x1 , ..., xn&1)=.(x1 , ..., xn&1 , a), x1 , ..., xn&1 # I. (2.11)

Proof. We can suppose that n�3 since for n=2 the result was proved
in Example 2.4, (i). The proof is built according to the same idea as in the
case of Chebyshev functions (see [15,18]). However the slight differences
due to the missing linear independence of the first n derivatives at each
point of I requires us to give it again. It includes several steps.

(1) Let us first prove that 8� is C� on I. Due to the definition of 8� ,
we have:

8� (a)=8(a), [8� (x)]=Oscn&1 8(a) & Osc1 8(x) if x # I"[a].

(2.12)

Consequently, there exists a function *: I � R such that:

8� (x)=8(x)+*(x) 8$(x), x # I. (2.13)
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In order to prove that 8� is C� on I, it is therefore sufficient (and actually
it is also necessary) to prove that function * is C� on I. Now, from (2.12)
we can derive that:

*(x)={
0 if x=a,

(2.14)
&

N(x)
N$(x)

if x{a,

where N is defined as in (2.8), i.e., N(x) := det[8$(a), ..., 8(n&1) (a),
8(x)&8(a)] . This function N is C� on I and for all i�1, N (i) (x)=
det[8$(a), ..., 8(n&1) (a), 8(i) (x)] . Therefore, according to Proposition 2.2,
the first derivative of N never vanishes on I"[a]. Hence, * is clearly C�

on I"[a]. On the other hand, we have:

N(a)=N$(a)= } } } =N (n&1) (a)=0, N (s) (a){0. (2.15)

From (2.15) one can prove that * is in fact C� on the whole interval I.
This follows from the following lemma we state here without proof (see
[15]).

Lemma 2.6. Let J be a real interval containing a. Suppose that f: J � R
is C� on J and satisfies f (a)= f $(a)= } } } = f (k&1) (a)=0, f (k) (a){0, and
f $(t){0 for all t # J"[a]. Then the function g defined on J by

g(t)=
f (t)
f $(t)

if t{0, g(a)=0,

is C� on J and g$(a)=1�k.

(2) Let us determine the osculating flats of 8� . By differentiation of
relation (2.13) up to order i�0, we obtain:

8� (i) (x)=*(x) 8 (i+1) (x)+(1+i*$(x)) 8(i) (x)

+ :
i&2

l=0
\ i

l+ *(i&l) (x) 8(l+1) (x), x # I. (2.16)

This proves that, for all i�0 and all x # I, Osci 8� (x)/Osci+18(x). Since
function 8� takes its values in Oscn&18(a), we thus have, for all x # I:

Osci 8� (x)/Osc i+1 8(x) & Oscn&1 8(a), i�0. (2.17)

Suppose first that x{a. For i�n&2, we know from Corollary 2.3 that
Osci+1 8(x) is (i+1)-dimensional. Furthermore, by (2.7), 8(x) � Oscn&1

8(a), hence Osc i+1 8(x)/3 Oscn&1 8(a). Accordingly, the right hand side
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of (2.17) is of dimension at most i. On the other hand, since N(x){0, for-
mula (2.14) proves that *(x){0. We can thus derive from (2.16) that the
osculating space Osci 8� (x) is i-dimensional. Due to (2.17), the latter obser-
vations prove that:

Osci 8� (x)=Osc i+1 8(x) & Oscn&1 8(a), x{a, i=0, ..., n&2. (2.18)

Suppose now that x=a. Since *(a)=0, equality (2.16) then reduces to:

8� (i) (a)=(1+i*$(a)) 8 (i) (a)+ :
i&2

l=0
\ i

l+ *(i&l) (a) 8(l+1) (a), i�0.

(2.19)

According to Lemma 2.3, *$(a)=&1�k, where k�n is the smallest integer
such that N (k) (a){0, i.e., such that 8$(a), ..., 8(n&1) (a), 8(k) (a) are
linearly independent. Consequently, (1+i*$(a)){0 for all i�n&1. It
clearly follows that

Osci 8� (a)=Osci 8(a), i=0, ..., n&1. (2.20)

(3) Let us prove that 8� is a quasi-Chebyshev function of order n&1
on I. Choose any distinct {1 , ..., {r # I and any positive integers +1 , ..., +r

such that �r
i=1 + i=n&1. Then, using equalities (2.18) and (2.20), one can

check that:

,
r

i=1

Oscn&1&+i
8� ({i)=[.({1

+1, ..., {r
+r, a)]. (2.21)

Equality (2.21) proves both that 8� is a quasi-Chebyshev function of order
n&1 on I and that its blossom .~ satisfies (2.11). For more details, we refer
to [15]. K

Remark 2.7. The tricky part of the proof is in fact the differentiability
of function 8� , or, equivalently, that of the function * defined in (2.14).
Requiring the n derivative vectors 8$(a), ..., 8(n&1) (a), 8 (s) (a) to be
linearly independent for some s�n (which is automatically satisfied, with
s=n, when 8 is a Chebyshev function on I ) is a reasonable assumption to
guarantee this differentiability. We note that the assumption holds if the
components of 8 are analytic at a. It is intended to prevent the point a to
be a zero of infinite multiplicity of the function N defined in (2.8), which
might leave the possibility of the ratio N�N$ not being continuous at 0.
Whether or not it is possible to find a quasi-Chebyshev function 8 for
which the latter situation occurs is still an open problem.
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However, the result stated in Theorem 2.5 may be valid even though the
vectors 8$(a), ..., 8(n&1) (a), 8(s) (a) are linearly dependent for all s�n, as
pointed out in the following example. Consider the function 8 defined by:

8(x) :=(x, x2, e&1�x)T if x{0, 8(0)=(0, 0, 0)T.

Since (e&1x)" is strictly monotonic on I :=[0, (3&- 3)�6], Theorem 3.1 of
the next section will enable us to prove that 8 is a quasi-Chebyshev func-
tion of order 3 on I. Choosing a :=0, for all integers s�3, we have
8(s) (a)=0. On the other hand, N(x) :=det(8$(0), 8"(0), 8(x)&8(0))=
2 e&1�x for x{0. It follows that *(x)=&x2 for all x # I. Therefore function
* is C� on I.

2.3. Chebyshev-Bernstein Basis

In this subsection, we shall assume that 8 is a C� quasi-Chebyshev
function of order n on I and that it satisfies the following assumption:

(Hn) for any point x # I, there exists an integer s�n such that
the n derivative vectors 8$(x), ..., 8(n&1) (x), 8(s) (x) are linearly
independent.

In order to make it possible to iterate the subblossoming principle, we first
need to establish the following elementary result.

Lemma 2.8. The quasi-Chebyshev function 8� of order n&1 defined in
(2.10) satisfies (Hn&1).

Proof. Consider first a point x{a and suppose that 8$(x), ...,
8(n&1) (x), 8(s) (x) are linearly independent. Then, since *(x){0, it easily
follows from (2.16) that 8� $(x), ..., 8� (n&2) (x), 8� (s&1) (x) are linearly inde-
pendent in turn. On the other hand, (2.20) proves the linear independence
of the n&1 vectors 8� $(a), ..., 8� (n&2) (a), 8� (n&1) (a). K

We are now in a position to iterate the subblossoming principle, which
will later allow us to develop a de Casteljau type algorithm.

Theorem 2.9. For all x1 , ..., xn&1 , a, b # I, a{b, there exists a C�

strictly monotone function ; (depending on x1 , ..., xn&1 , a, b) such that:

.(x1 , ..., xn&1 , x)

=[1&;(x)] .(x1 , ..., xn&1 , a)+;(x) .(x1 , ..., xn&1 , b), x # I.

(2.22)

Proof. Lemma 2.8 allows us to iterate the subblossoming principle. It
follows that the function .(x1 , ..., xn&1 , .) is a C � quasi-Chebyshev func-
tion of order 1 on I, whence the result. K
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From now on, we will suppose that the two points a, b are fixed, and we
will apply (2.22) with (x1 , ..., xn&1) :=(an&k&i, b i, xk&1), where x is any
given point in I, and k, i are any two integers satisfying 1�k�n,
0�i�n&k. The corresponding function ; (which depends on x, a, b, k, i)
satisfies ;(a)=0, ;(b)=1, and ;( y)>0 when y is located strictly between
a and b. Setting ;i, k (x) :=;(x), we thus obtain:

.(an&k&i, bi, xk)=[1&;i, k (x)] .(an&k&i+1, bi, xk&1)

+;i, k (x) .(an&k&i, b i+1, xk&1), x # I. (2.23)

Moreover the function ;i, k defined in such a way satisfies

;i, k (a)=0, ;i, k (b)=1, ;i, k (x)>0 for x strictly between a and b.

(2.24)

For any x # I, equalities (2.23) allow the computation in n steps of
8(x)=.(xn) as an affine combination of the n+1 starting points

6i :=.(an&i, b i) # A, i=0, ..., n, (2.25)

called the Chebyshev-Be� zier points of 8 with respect to (a, b). This can be
written as follows:

8(x)= :
n

i=0

Bi (x) 6i , :
n

i=0

Bi (x)=1, x # I. (2.26)

Furthermore, due to (2.24), when x is located strictly between a and b, the
latter affine combination is actually a strictly convex one, which means that

Bi (x)>0 for x strictly between a and b, i=0, ..., n. (2.27)

The proposition below states additional properties of the points 6i and the
functions Bi . They are slighty different from those obtained in [16].

Theorem 2.10. The Chebyshev-Be� zier points 60 , ..., 6n of 8 are affinely
independent, and satisfy

Osci 8(a)=aff(60 , ..., 6 i),

Osci 8(b)=aff(6n&i , ..., 6n), i=0, ..., n&1. (2.28)

The functions Bi , i=0, ..., n, form a basis of the space E(8) (called its
Chebyshev-Bernstein basis w.r. to (a, b)). For i=1, ..., n&1, Bi vanishes
exactly i times at a and exactly n&i times at b, while B0 vanishes at least
n times at b and Bn at least n times at a.
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Proof. According to Corollary 2.3, the affine space spanned by the
image of 8 is n-dimensional. The affine independence of the Chebyshev-
Be� zier points 60 , ..., 6n therefore results from (2.26). The fact that
(B0 , ..., Bn) form a basis of the (n+1)-dimensional space E(8) results by
taking the images of the first equality in (2.26) under all real valued affine
maps. Since 8(a)=60 , due to the affine independence of the Chebyshev-
Be� zier points, equality (2.27) proves that

B0 (a)=1, Bi (a)=0 for i=1, ..., n. (2.29)

On the other hand, differentiation of the two equalities in (2.26) leads to:

(8$(a), ..., 8(n&1) (a))T=M. (61&60 , ..., 6n&60)T, (2.30)

where M is the (n&1)_n matrix defined by Mi, j=B (i)
j (a), 1�i�n&1,

1� j�n. Now, due to definition (2.25), for 0�l�n&1, the (l+1)
Chebyshev-Be� zier points 60 , ..., 6l belong to Oscl 8(a). Therefore, (61&
60 , ..., 6l&60) and (8$(a), ..., 8(l) (a)) are two bases of the direction of
Oscl 8(a). Consequently, the matrix M appearing in (2.30) satisfies Mi, j=0
for j>i and Mi, i {0. Hence,

B (i)
j (a)=0, B (i)

i (a){0 for 1�i< j�n. (2.31)

Relations (2.29), (2.31), and the symmetric ones obtained by exchanging
the points a and b (which consists in taking the Chebyshev-Bernstein basis
and the Chebyshev-Be� zier points in reverse order) provide the expected
result. K

Remark 2.11. (i) When 8 is a Chebyshev function, equalities (2.28)
are also valid for i=n, but this is not true for quasi-Chebyshev functions.
We can only write aff(60 , ..., 6n)=Oscs 8(b), where s is the smallest
integer such that 8$(b), ..., 8(n&1) (b), 8(s) (b) are linearly independent. As a
matter of fact, B0 vanishes exactly s times at b.

(ii) If the space E(8) is additionally known to be a Chebyshev space
on I (i.e., if the number of distinct zeros of any nonzero element of this
space is bounded by n), then the properties stated in Theorem 2.10 prove
that the Chebyshev-Bernstein basis is the optimal shape preserving basis of
the restriction of the space E(8) to [a, b] (assuming that a<b), as intro-
duced by J.-M. Carnicer and J.-M. Pen~ a in [2]. It means that:

�� it is normalized in the sense that �n
i=0 Bi=1,

�� it is totally positive, i.e., for any x0<x1< } } } <xn in [a, b], the
matrix (Bi (xj))0�i, j�n is totally positive (i.e., all its minors are non-
negative),
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�� all other basis of E(8) assumed to be totally positive on [a, b] is
obtained by multiplication of (B0 , ..., Bn ) by a totally positive matrix.

For the proof we refer to [16, Theorem 3.2]. As for the importance of
such bases in geometric design we refer to [2, 6, 8].

Corollary 2.3 has stated the linear independence of the n vectors
8$(b), ..., 8(n&1) (b), 8(b)&8(a). Therefore, whatever the real numbers
;0 , ..., ;n&1 , :, there exists a unique element F # E(8) such that F (l) (b)=;l ,
l=0, ..., n&1, and F(a)=:. In particular, on account of Theorem 2.10, B0 is
the unique element of E(8) which vanishes n times at b and satisfies the addi-
tional condition B0 (a)=1. We can more generally state the following result.

Corollary 2.12. Given two distinct points a, b # I and the nonnegative
integers i, j such that i+ j=n&1, any Hermite interpolation problem:

F (l) (a)=:l , l=0, ..., i, F (l) (a)=;l , l=0, ..., j, (2.32)

has a unique solution in the space E(8).

Proof. As already observed, for i=0 or j=0, this follows from
Corollary 2.3.

Consider an integer i, 1�i�n&1. According to (2.25), the Chebyshev-
Be� zier point 6i is defined by: [6i] :=Osci 8(a) & Oscn&i 8(b). Conse-
quently, there exist unique real numbers *k, i and +l, i such that

6i+1=8(a)+ :
i+1

k=1

*k, i 8(k) (a)=8(b)+ :
n&i

l=1

+l, i 8(l) (b). (2.33)

It results from (2.33) that

*i, i=
det(8$(a), ..., 8(i&1) (a), 8(b)&8(a), 8$(b), ..., 8(n&i) (b))

det(8$(a), ..., 8(i) (a), 8$(b), ..., 8(n&i) (b))
. (2.34)

Taking into account Theorem 2.10, by comparison of (2.30) with the first
part of (2.33), we can see that *i, i=1�B (i)

i (a). In particular *i, i {0. This
proves the linear independence of the n vectors 8$(a), ..., 8(i&1) (a),
8(b)&8(a), 8$(b), ..., 8(n&i) (b). The unicity of the solution of any
Hermite interpolation problem such as (2.32) follows easily. K

In particular, for i=1, ..., n&1, the Chebyshev-Bernstein function Bi is
the unique element of E(8) which vanishes i times at a and n&i times at
b and satisfies the additional condition:

Bi
(i) (a)=

det(8$(a), ..., 8(i) (a), 8$(b), ..., 8(n&i) (b))
det(8$(a), ..., 8(i&1) (a), 8(b)&8(a), 8$(b), ..., 8(n&i) (b))

.
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For the expressions of the Chebyshev-Bernstein basis which can be derived
from these observations, we refer to [16].

2.4. Splines Based on a Quasi-Chebyshev Function

In this subsection we shall give a short outline on the contruction of
splines based on the quasi-Chebyshev function 8. If h is an affine map
defined on the space A, the Chebyshev-Be� zier points (w.r. to (a, b)) of the
E(8)-function F=h b 8 are defined as usual by f (an&i, bi), i=0, ..., n,
where f =h b . is the blossom of F. They are the images of the Chebyshev-
Be� zier points 60 , ..., 6n of 8 under h. Through the following result,
blossoms prove to be the relevant tool to characterize contact conditions
between two E(8)-functions.

Theorem 2.13. Given any two E(8)-functions F and G, any point a # I
and any integer r, 0�r�n&1, the following three properties are equivalent:

(i) F and G have a contact of order r at a, i.e., F (i) (a)=G (i) (a) for
i=0, ..., r,

(ii) F and G have the same first r+1 Chebyshev-Be� zier points w.r. to
(a, b), where b is any point picked in I"[a],

(iii) the blossoms f and g of F and G take the same values at any
n-tuple containing at least (n&r) times the point a, i.e.,

f (an&r, x1 , ..., xr)= g(an&r, x1 , ..., xr) for all x1 , ..., xr # I.

The proof is mainly based on (2.28) and on the definition of the blossoms
f and g as f =h b . and g=k b ., where h and k are the affine maps such
that F=h b 8 and G=k b 8. It is similar to the case when 8 is a Chebyshev
function which we refer to (see [15, 18]). However, let us mention the dif-
ference between the two cases. Here, the statement is no longer valid for
r=n. If r=n, properties (ii) and (iii) are still equivalent, but they are no
longer equivalent to (i). In order to make it clear, let us assume that
8(n) (a) is a linear combination of 8$(a), ..., 8(n&1) (a). Through Corollary
2.12, one can prove the existence of infinitely many affine maps h: A � A

such that the corresponding E(8)-functions F=h b 8 satisfies F (i) (a)=
8(i) (a) for i=0, ..., n&1. All of them automatically satisfy F (n) (a)=8(n) (a),
while the equality f =. holds only when h is the identity. Nevertheless, the
important fact is the possibility of expressing contact conditions of order
less than or equal to n&1 through blossoms. This allows the extension of
the blossoming principle to splines associated with any given subdivision
t0<t1< } } } <tq<tq+1 contained in I, each knot t i , 1�i�q, being
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allocated a multipicity 1�mi�n. Let S denote the space of all functions
S: [t0 , t1] � R which are Cn&ml at tl , l=1, ..., q, and satisfy:

S(x)=Fk (x), x # [tk , tk+1], k=0, ..., q,

where Fk # E(8). Using Corollary 2.12, it is easy to check that the space S

is (n+m+1)-dimensional, where m :=�q
i=1mi .

Now, introducing additional abscissae t&n�t&n+1� } } } �t0 , tq+1�
tq+2� } } } �tq+n in the interval I, let us restrict ourselves to the simplest
case of all multiplicities m1 , ..., mq equal to 1. Then, define the (n+q+1)
poles of S as

Qj :=fk (tj+1 , ..., tj+n), k # Jj , j=&n, ..., q,

where fk denotes the blossom of Fk and

Jj=[max(0, j), ..., min(q, j+n)], j=&n, ..., q.

The fact that Q&n , ..., Qq are well defined directly follows from Theorem
2.13, (iii). For any given i=0, ..., q, and any x # [ti , ti+1], the properties of
the blossoms then make it possible to calculate in n steps S(x)=Fi (x) as
a convex combination of the n+1 poles Qj= fi (tj+1 , ..., tj+n), j=i&n, ..., i.
This describes a de Boor type algorithm, leading as usual to a B-spline
basis which satisfies all expected properties. For more details, we refer to
[15, 18], everything working in the same way, including the case of higher
multiplicities (provided that the multiplicities are greater than or equal to 1).

3. CONSTRUCTING QUASI-CHEBYSHEV FUNCTIONS
FROM WEIGHT FUNCTIONS

A classical way to obtain extended Chebyshev spaces consists in defining
them as kernels of differential operators associated with weight functions.
Given positive functions w1 , w2 , ..., wn : I � R, with wk # Cn+1&k (I ), we
shall refer to them as weight functions. With such weight functions we
associate the following differential operators defined on Cn (I ) by:

L0u :=u, Lk u :=\ 1
wk

Lk&1 u+$
, k=1, ..., n. (3.1)

It is well know that Un :=Ker(Ln)=[u # Cn (I ) | Ln u=0] is then an
n-dimensional extended Chebyshev space on I, said to be associated with the
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weight functions w1 , w2 , ..., wn (see [21]). Starting from the same differen-
tial operators and from a given finite dimensional subspace V0 of C0 (I ),
one can more generally consider

Vn :=[u # Cn (I ) | Ln u # V0]. (3.2)

Let us introduce the space V1 :=[u # C 1 (I ) | ( u�wn)$ # V0]. Using (3.1), we
can as well define Vn as the space of all functions u # C n (I ) such that
Ln&1u # V1 . From (3.1) it is easy to similarly check that

Vn :=[u # Cn (I ) | Ln&ku # Vk], (3.3)

where the Vk 's are recursively defined by

Vk+1 :={u # Ck+1 (I ) } \ u
wn&k +

$
# Vk= , k=0, ..., n&1. (3.4)

Clearly dim Vk+1=1+dim Vk , so that

dim Vk=k+dim V0 , k=0, ..., n. (3.5)

Given any v # C n (I ), we say that a point x # I is a zero of multiplicity k of
v, 0�k� } } } �n, when

v( j) (x)=0 for j=0, ..., k&1, v(k) (x){0,

and is a zero of multiplicity n+1 when

v( j) (x)=0 for j=0, ..., n.

For such a function v, we shall then denote by ZI
n (v) the total number of

zeros of v in I, counted with this notion of multiplicity, this number being
possibly equal to +�. For instance, if v(x) :=xm, where m is a positive
integer, then ZR

k (v)=k+1 for all k�m&1, whereas ZR
k (v)=m if k�m.

For any v # C0 (I ), ZI
0 (v) is just the number of points at which v vanishes.

Given a subspace V of C n (I ), we shall denote by ZI
n (V) the upper bound

of the quantities ZI
n (v), taken over all the nonzero elements v of V. When

V0 is 2-dimensional, it results from (3.5) that Vn is (n+2)-dimensional. The
purpose of this section is to prove the following result.

Theorem 3.1. Assume the space V0 to be 2-dimensional, and consider
n+2 functions 81 , ..., 8n+2 # Cn+1 (I ) such that the first derivatives
8$1, ..., 8$n+2 form a basis of Vn . If Z I

0 (V0)�1, then 8 :=(81 , ..., 8n+2)T is
a quasi-Chebyshev function of order n+2 on I.
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Before proving this theorem, we shall illustrate it by a simple example.
Let I be any interval and ' a strictly monotonic continuous function on I.
Then the space V0 :=span(1, ') clearly satisfies Z I

0 (V0)�1. Choosing
wk :=1 for all k�1, we can see that, for all k�0,

Vk=span(1, ..., xk, 'k (x)),

where 'k satisfies 'k
(k) :='. Therefore, for all n�2, the function 8 defined

on I by

8(x) :=(x, ..., xn&1, 'n&1 (x))T,

is a quasi-Chebyshev function of order n on I. For instance, on any interval
I we can take '(x) :=x2m+1 where m is a given nonnegative integer, which
proves that 8(x) :=(x, ..., xn&1, xn+2m)T is a quasi-Chebyshev function of
order n on R. Observe that, unless m=0 (in which case E(8)=Pn), it is
not a Chebyshev function on R since the last component of 8 vanishes
n+2m times at 0.

In order to prove Theorem 3.1, we have to show that some intersections
of affine flats consist of single points. We shall use the following technical
lemmas, the proofs of which can be skipped at first reading.

Lemma 3.2. Given r linear subspaces V1 , ..., Vr of Rq, such that dim(Vi)
=q&+i with �r

i=1+ i=q, for i=1, ..., r, choose a basis (v i
1 , ..., v i

q&+i
) of V i ,

and consider the q_(q&+i) matrix Ai :=(v i
1 , ..., v i

q&+i
). Let a1 , ..., ar be any

r points of Rq. Then, the affine flat � r
i=1 (ai+Vi) consists of a single point

of Rq if and only if the following square matrix A of order (r&1) q is
regular:

A :=\
A1 0 } } } 0 Ar

+ . (3.6)
0 A2 0 Ar

b b . . . b b
0 0 } } } Ar&1 Ar

Proof. Considering the r&1 vectors of Rq defined by Xi :=ai&ar ,
i=1, ..., r&1, the intersection � r

i=1 (a i+Vi) consists of a single point iff
there exist unique vectors x1 , ..., xr , with xi # Vi , i=1, ..., r, satisfying

Xi=xi+xr i=1, ..., r&1,
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or equivalently, unique real numbers * i
j , i=1, ..., r, j=1, ..., q&+ i , such

that

Xi= :
q&+i

j=1

* i
j v i

j+ :
q&+r

j=1

*r
j vr

j .

This is a linear system of order (r&1) q the matrix of which is A, whence
the result. K

Lemma 3.3. The data are the same as in Lemma 3.2. Given k=1, ..., r,
for each subset Lk of the set [1, ..., q&+k], with |Lk |= p, let us denote by
Ak (Lk) the q_p matrix defined by

Ak (Lk) :=(vk
l1

, ..., vk
lp

),

where l1<l2< } } } <lp are the elements of Lk . Let us also set Lk

:=[1, ..., q&+k]"Lk and Lk* :=l1+ } } } +lp . Then, the determinant of the
square matrix A defined in (3.6) satisfies:

det A=\ :

1�k�r

Lk /[1, ..., q&+k]
|Lk | =+k+1+ } } } ++r

`
r&1

k=1

(&1)Lk* det(Ak (Lk), Ak+1 (Lk+1 )). (3.7)

Proof. Let us start by a comment on formula (3.7). For k=1, the two
conditions L1 /[1, ..., q&+1] and |L1 |=+2+ } } } ++r are satisfied only
for L1=[1, ..., q&+1], which means that A1 (L1)=A1 . Similarly, for k=r,
the only possibility is Lr=<, and thus, Ar (Lr )=Ar .

In order to prove equality (3.7), the first step consists in observing that
det A=\det B, where

A1 0 } } } 0 Ar&1 0

0 A2 } } 0 Ar&1 0

B := \ b b . . . b b b + . (3.8)

0 0 } } } Ar&2 Ar&1 0

0 0 } } } 0 Ar&1 Ar .

Let us denote by B1
1 , ..., B1

q&+1
, B2

1 , ..., B2
q&+2

, ... # R(r&1) q the columns of
matrix B. For 1� j�q&+r&1 , Br&1 T

j =(vr&1 T
j , ..., v r&1 T

j ), so that we can
write

Br&1
j =Cj+Dj , j=1, ..., q&+r&1, (3.9)
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where

Cj
T :=(0Rq

T, ..., 0Rq
T, vr&1 T

j ), Dj
T :=(vr&1 T

j , ..., vr&1 T
j , 0Rq

T).

The multilinearity of the determinant with respect to its columns yields

det B= :
L/[1, ..., q&+r&1]

det B(L), (3.10)

where

B(L) :=(..., Br&2
q&+r&2

, Br&1
1 (L), ..., Br&1

q&+r&1
(L), Br

1 , ...)

is obtained from B by replacing the columns Br&1
j by

Br&1
j (L) :=Cj if j # L, Br&1

j (L) :=Dj if j � L, j=1, ..., q&+r&1.

(3.11)

Picking any sequence l1< } } } <lp in the set [1, ..., q&+r&1], let us
calculate det B(L) for L :=[l1 , ..., lp]. Change the order of the columns
Br&1

j (L) so that Cl1
, ..., Clp

come last. Using the notations introduced in
the statement of the lemma, we obtain

det B(L)=(&1) p(q&+r&1)+1�2( p&1) p+L* det B� (L), (3.12)

where B� (L) is the following matrix:

B� (L) :=\
A1 } } } 0 Ar&1 (L� ) 0 0

+ . (3.13)
b . . . b b b b
0 } } } Ar&2 Ar&1 (L� ) 0 0

0 } } } 0 0 Ar&1 (L) Ar

Calculating det B� (L) by block, we can check that it is equal to zero (and
thus, due to (3.12), so is det B(L)), unless p=+r . Equality (3.10) therefore
reduces to

det B= :

|L| =+r

L/[1, ..., q&+r&1]

det B(L).
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Now, using (3.12) and (3.13), this finally yields

det B=(&1)+r(q&+r&1)+1�2(+r&1) +r :
L

(&1)L* det(Ar&1 (L), Ar)

_}
A1 } } } 0 Ar&1 (L� )

} ,b . . . b b
0 } } } Ar&2 Ar&1 (L)

the sum in (3.14) being taken over all subsets L of [1, ..., q&+r&1] such
that |L|=+r . The matrices appearing in the right hand side of (3.14) have
exactly the same structure as A. We can thus repeat the procedure, which
eventually leads to (3.7). K

Proof of Theorem 3.1. In order to prove that 8 is a quasi-Chebyshev
function of order n+2 on I, we actually have to check that, for any integer
r�2, any given points {1< } } } <{r in I, and any given positive integers
+1 , ..., +r such that �r

i=1 + i=n+2, the intersection

,
r

i=1

Oscn+2&+i
8({i)

consists of a single point. The situation is thus the same as that investigated
in Lemmas 3.2 and 3.3, with q :=n+2 and, for i=1, ..., r,

ai :=8({i), Vi :=span(8$({i), ..., 8 (n+2&+i) ({i)).

Observe that, for any u # Cn (I ) and any x # I,

(L0u(x), ..., Lnu(x))T=T(x) } (u(x), ..., u(n) (x))T, (3.15)

where T(x) is a lower triangular matrix with diagonal elements (1�> i
k=1

wk (x)) i=0, ..., n . Consequently, as a basis of Vi we can choose

v i
j :=Lj&18$({i), j=1, ..., n+2&+ i .

According to Lemma 3.2, we have to check that the corresponding matrix
A defined by (3.6) is regular. Due to equality (3.7) it is sufficient to prove
that, for a given k=1, ..., r, all the corresponding quantities (&1)Lk*

det(Ak (Lk), Ak+1 (Lk+1 )) have the same strict sign, whatever Lk , Lk+1

such that Lk /[1, ..., q&+k], |Lk |=+k+1+ } } } ++r , Lk+1 /[1, ..., q&
+k+1], |Lk+1 | = +1+ } } } ++k . As a matter of fact, this will result by
applying Proposition 3.4 below to 9 :=8$. K
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Proposition 3.4. Assume V0 to be 2-dimensional and to satisfy ZI
0 (V0)

�1. Let 9 :=(91 , ..., 9n+2)T, where (91 , ..., 9n+2) is a basis of Vn . Then,
for any integer +, 0�+�n, the quantity

(&1)l0+ } } } +l+ det[Ll0
9(a), ..., Ll+

9(a), Lm0
9(b), ..., Lmn&+

9(b)] (3.16)

has the same strict sign for any sequences of integers 0�l0<l1< } } } <
l+�n, 0�m0<m1< } } } <mn&+�n, and any a, b # I, a<b.

Let us first state two elementary lemmas which will prove to be useful
throughout the proof of Proposition 3.4. Starting from any function
v # Cn (I ), Lk being a differential operator of order k, Lkv # Cn&k (I ) and
thus ZI

n&k (Lkv) is well defined.

Lemma 3.5. For any interval J/I, any function v # Cn (I ) and any
integer k, 0�k�n&1,

ZJ
n&k&1 (Lk+1v)�ZJ

n&k (Lkv)&1. (3.17)

Furthermore, suppose that there is equality in (3.17) and that J=[a, b].
Then

Lkv(a){0 O Lk v(a) Lk+1v(a)<0, (3.18)

Lkv(b){0 O Lk v(b) Lk+1v(b)>0. (3.19)

Proof. Since Lk+1v=( 1
wk+1

Lkv)$ and ZJ
n&k (Lkv)=ZJ

n&k ( 1
wk+1

Lk v),
(3.17) follows from Rolle's theorem.

Suppose that J=[a, b] and that there is equality in (3.17). It follows
that Lkv vanishes at least once in J. If Lkv(a){0, let : # ]a, b] be the
smallest point in J at which Lkv vanishes. Then, Lk+1v does not vanish on
[a, :[ (for instance, in case :<b, this results by applying inequality (3.17)
on [:, b]), which proves 1

wk+1
Lkv to be monotonic on [a, :]. Conse-

quently, due to Lk (a){0, and Lk (:)=0, we can state that

1
wk+1

Lk v(a) \ 1
wk+1

Lk v+$
<0,

i.e., Lkv(a) Lk+1 v(a)<0. A similar argument leads to (3.19). K

Lemma 3.6. Assume that ZI
0 (V0)�M. Then, for any integer k�n, ZI

k (Vk)
�k+M. Moreover, given v # Vn and J/I, if ZJ

n&l (Ll v)=n&l+M for a
given integer l, 0�l�n, then ZJ

n&k (Lkv)=n&k+M for any integer k,
n�k�l.

Proof. This is an immediate consequence of (3.17). K
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Proof of Proposition 3.4. According to Lemma 3.6, ZI
k (Vk)�k+1 for

all k�n. So, if v # Vn satisfies ZI
n (v)=n+2, then v=0. Therefore, given

any integer r, 2�r�n+2, any distinct points a1 , ..., ar # I, and any
positive integers +1 , ..., +r such that � r

i=1 +i=n+2, we must have

det[9(a1), 9$(a1), ..., 9 (+1&1) (a1), 9(a2), ..., 9(ar), ..., 9 (+r&1) (ar)]{0.

In particular, by continuity, it follows that, for a fixed integer +, 0�+�n,
the determinant

det[9(a), 9$(a), ..., 9 (+) (a), 9(b), 9$(b), ..., 9 (n&+) (b)] (3.20)

keeps the same strict sign for any a, b # I, a<b. Hence, so does

2(a, b) :=det[L09(a), L19(a), ..., L+9(a), L09(b), L19(b), ..., Ln&+9(b)],

(3.21)

since, by (3.15), 2(a, b) is obtained by dividing (3.20) by >+
i=1 wi (a)+&i+1

>n&+
j=1 wj (b)n&+& j+1 which is positive.

Now, let us set:

u(x) :=det[L0 9(a), ..., L+&19(a), 9(x), L0 9(b), ..., Ln&+9(b)]. (3.22)

Then, u clearly belongs to Vn and Lju(x) is obtained by replacing 9(x) by
Lj 9(x) in the right hand side of (3.22). Accordingly, we have:

L0u(a)= } } } =L+&1u(a)=0,

L0u(b)= } } } =Ln&+u(b)=0, (3.23)

L+u(a)=2(a, b){0.

Therefore, from (3.15) we can derive that Z[a, b]
n (u)�n+1. The inequality

ZI
n (Vn)�n+1 shows that in fact Z[a, b]

n (u)=n+1. On account of Lemma
3.6, this implies that Z[a, b]

n& j (Lju)=n& j+1 for all j=0, ..., n. We thus have
in particular

L+u(a){0, Z[a, b]
n&k&1 (Lk+1u)=Z[a, b]

n&k (Lku)&1, +�k� j&1,

for all j=++1, ..., n. Applying (3.18) recursively, it follows that

(&1) j&+ L+ u(a) Lju(a)=(&1) j&+ 2(a, b) Lju(a)>0

for all j=+, ..., n, (3.24)
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which can also be written as follows:

(&1)1+ } } } ++ 2(a, b) (&1)1+ } } } +(+&1)+ j Lju(a)>0 for all j=+, ..., n.

We actually have proved that, whatever a<b, all the quantities (3.16) have
the same strict sign as (&1)1+ } } } ++ 2(a, b) provided that li=i for
0�i�+&1 and mi=i for 0�i�n&+. Let us now fix an integer l+ such
that ++1�l+�n, and define:

v(x) :=det[L09(a), ..., L+&29(a), 9(x), Ll+
9(a), L09(b), ..., Ln&+ 9(b)].

(3.25)

Again, this function v belongs to Vn and it clearly satisfies:

L0v(a)= } } } =L+&2v(a)=0,

L0v(b)= } } } =Ln&+v(b)=0,
(3.26)

Ll+
v(a)=0,

L+&1v(a)=Ll+
u(a).

Accordingly, due to (3.24), L+&1v(a){0. On the other hand, (3.26) also
shows that Z[a, b]

n (v)�n. Applying (3.17) then proves that

Z[a, b]
n& j (Ljv)�n& j for all j=0, ..., n. (3.27)

From L+&1v(a){0 we can deduce that Z[a, b]
n&++1 (L+&1v)=Z]a, b]

n&++1 (L+&1v).
Hence, applying (3.17) again, but now on ]a, b], we obtain:

n& j+1�ZI
n& j (Vj)�Z ]a, b]

n& j (Ljv)�n& j, +&1� j�n. (3.28)

Let us assume that, for some integer j, +&1� j�l+&1, Z ]a, b]
n& j (Ljv)=

n&j+1. According to Lemma 3.6, we would have:

Z ]a, b]
n&k (Lkv)=n&k+1 for all k= j, ..., n. (3.29)

Thus, in particular, due to Ll+
v(a)=0, (3.29) would imply

Z[a, b]
n&l+

(Ll+
v)�1+Z ]a, b]

n&l+
(Ll+

v)=n&l++2,

which would contradict ZI
n&l+

(Vn&l+
)�n&l++1. Taking (3.28) into con-

sideration, we finally have proved that

Z ]a, b]
n& j (Ljv)=n& j for all j=+&1, ..., l+&1. (3.30)
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On the other hand, suppose that Ll+&1 v(a)=0=Ll+
v(a). The point a

would then be a zero of Ll+&1v of multiplicity �2. On account of (3.30),
we would thus have

Z[a, b]
n&l++1�2+Z ]a, b]

n&l++1=n&l++3,

which would contradict Z[a, b]
n&l++1�n&l++2. Therefore Ll+&1v(a){0.

Consequently, (3.30) leads to:

Z[a, b]
n&l++1 (Ll+&1 v)=Z ]a, b]

n&l++1 (Ll+&1v)=n&l++1. (3.31)

From (3.31) and (3.17) we can derive that Z[a, b]
n& j (L jv)�n& j for

j=+&1, ..., l+&1. By comparison with (3.30), this eventually proves that

Z[a, b]
n& j (Ljv)=n& j, Ljv(a){0 for j=+&1, ..., l+&1.

All inequalities (3.17) on [a, b], corresponding to k=+&1, ..., l+&2, are
therefore equalities. Starting from L+&1v(a){0 and using (3.18), we can
conclude that

(&1) j&++1 L+&1v(a) Ljv(a)>0 for j=+&1, ..., l+&1.

Writing equality (3.24) for j=l+ , and taking into account the fact that
L+&1 v(a)=Ll+

u(a), the latter equality leads to

(&1) j&++1 (&1)l+&+ 2(a, b) Ljv(a)>0 for j=+&1, ..., l+&1,

(3.32)

that is

(&1)1+ } } } ++ 2(a, b) (&1)1+ } } } +(+&2)+ j+l+Ljv(a)>0,

j=+&1, ..., l+&1.

This means that all the quantities (3.16) corresponding to li=i for
j=0, ..., +&2, and mi=i for i=0, ..., n&+ have the same strict sign as
(&1)1+ } } } ++ 2(a, b). The next step will consist in fixing a second integer
l+&1 such that +�l+&1<l+�n and in considering the function w # Vn

defined by

w(x) :=det[L0 9(a), ..., L+&39(a), 9(x),

Ll+&1
9(a), Ll+

9(a), L09(b), ..., Ln&+9(b)].
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This function clearly satisfies L+&2w(a)=Ll+1
v(a). Similar arguments will

make it possible to prove that

Z[a, b]
n& j (Ljw)=n& j&1, L jw(a){0 for j=+&2, ..., l+&1&1,

thus leading to

(&1) j&++2 L+&2w(a) L jw(a)>0, j=+&2, ..., l+&1&1

by application of (3.18). Due to (3.32) this will show that, for a<b, all the
quantities (3.16) have the same strict sign as (&1)1+ } } } ++ 2(a, b) provided
that li=i for i�+&3 and mi=i for all i�n&+. Continuing in this way
proves the expected result provided that mi=i for i=0, ..., n&+. Applying
the same procedure at b rather than a yields the final result. K

Remarks 3.7. (i) Select a basis (:, ;) in the space V0 and a point a # I.
Then we can choose 8=(81 , ..., 8n+2)T as follows:

81 (x) :=|
x

a
w1 (t1) dt1,

82 (x) :=|
x

a
w1 (t1) |

t1

a
w2 (t2) dt2dt1,

b

8n (x) :=|
x

a
w1 (t1) |

t1

a
w2 (t2) |

t2

a
} } } |

tn&1

a
wn (tn) dtn } } } dt2dt1, (3.33)

8n+1 (x) :=|
x

a
w1 (t1) |

t1

a
w2 (t2) |

t2

a
} } }

_|
tn&1

a
wn (tn) |

tn

a
:(t) dt dtn } } } dt2 dt1,

8n+2 (x) :=|
x

a
w1 (t1) |

t1

a
w2 (t2) |

t2

a
} } }

_|
tn&1

a
wn (tn) |

tn

a
;(t) dt dtn } } } dt2 dt1.

With 80=1, the basis (80 , ..., 8n+2) generalises the canonical systems
classically introduced in extended Chebyshev spaces (see [21]). If every-
thing is assumed to be C � on I, then, for i�1,

det(L08$, ..., Ln 8$, 8(n+1+i))=w1 } } } wn } :;
:(i)

;(i) } .
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Condition (Hn+2) of Section 2.3 is therefore satisfied iff, for any x # I, there
exists an integer i�1 such that :(x) ;(i) (x)&:(i) (x) ;(x){0.

(ii) Under the assumptions of Theorem 3.1, the associated space E(8)
satisfies E(8)=[u # C n+1 (I ) | Lnu$ # V0]. The condition ZI

0 (V0)�1 means
that V0 is a Chebyshev space on I. According to Lemma 3.6, it implies in
particular that Vn is also a Chebyshev space on I and therefore so is E(8).
Consequently, on account of Remark 2.11, the Chebyshev-Bernstein basis
w.r. to any a, b # I, a<b, is the optimal shape preserving basis of E(8)
restricted to [a, b].

(iii) Suppose now that V0 /C 2 (I ) and that it is a 2-dimensional
extended Chebyshev space on I. Then, if I is a closed bounded interval,
there exist weight functions wn+1 # C2 (I ), wn+2 # C1 (I ) such that V0=
Ker M2 , where, for all u # C2 (I ),

M1u :=\ 1
wn+1

u+$
, M2u :=\ 1

wn+2

M1u+$
.

Assuming the weight functions w1 , ..., wn to satisfy wk # C n+3&k (I ), the dif-
ferential operators L0 , ..., Ln can now be defined on Cn+2 (I ), and the space
Vn is the extended Chebyshev space associated with the weight functions
w1 , ..., wn+2 . The function 8 appearing in Theorem 3.1 is therefore a
Chebyshev function of order n+2 on I. The result remains true even if I
is not closed and bounded, since 8 is proved to be a Chebyshev function
on any closed bounded interval contained in I.

4. EXAMPLES

In this section we use the method of Section 3 to construct examples of
quasi-Chebyshev functions comprising polynomials which satisfy condition
(Hn) of Section 2.3 and hence enjoy the properties derived in Sections 2.3
and 2.4. As discussed in Section 1, these examples include those introduced
in [3, 10] for tension methods for shape-preserving interpolation.

Take I :=[0, 1], with V0 :=span (:, ;), where :(x) :=xm1, ;(x) :=
(1&x)m2 (m1 and m2 being any two positive integers), and wk=1, k=1, ...,
n&2. Associated with these data, consider the spaces Vk , k=0, ..., n&2,
defined as in (3.4). We clearly have:

Vk=span(1, x, ..., xk&1, xk+m1, (1&x)k+m2), k=0, ..., n&2. (4.1)
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Let us introduce the function 8: I � Rn defined by:

8(x) :=(81 (x), ..., 8n (x))T

:=(x, ..., xn&2, xn&1+m1, (1&x)n&1+m2)T, x # [0, 1]. (4.2)

Since (8$1, ..., 8$n) is a basis of the space Vn&2 , according to Theorem 3.1,
function 8 will be proved to be a quasi-Chebyshev function of order n on
I after checking that ZI

0 (V0)�1. Let us observe that some geometric
properties of the space E(8) were studied in [5] in the particular case
n=3.

Now, consider a nonzero element w # V0 . If w vanishes at 0, w=* : for
some *{0, and thus does not vanish elsewhere on I. A similar argument
works at 1. On the other hand, from the fact that both :(x) and the deter-
minant

} :(x)
;(x)

:$(x)
;$(x) }=xm1&1 (1&x)m2&1 _(m1&m2) x&m1&

do not vanish on ]0, 1[, we can deduce than V0 is an extended Chebyshev
space on ]0, 1[. Therefore, w has at most one zero in this interval. We thus
have checked that ZI

0 (V0)=1.
Furthermore, the fact that V0 is an extended Chebyshev space on ]0, 1[

also implies that each Vk is a (k+2)-dimensional extended Chebyshev
space on ]0, 1[ (see Remark 3.7, (iii)). Therefore, for all x # ]0, 1[, the n
derivative vectors 8$(x), ..., 8(n) (x) are linearly independent. Moreover, it
is easy to check that

:(0) ;(m1) (0)&:(m1) (0) ;(0)=&m1 !,

:(1) ;(m2) (1)&:(m2) (1) ;(1)=(&1)m2 m2 !.

According to Remark 3.7, (i), this proves the linear independence of the n
vectors 8$(0), ..., 8(n&1)(0), 8(n&1+m1) (0) on the one hand, and of 8$(1), ...,
8(n&1) (1), 8(n&1+m2) (1) on the other hand. Therefore the assumption (Hn)
is satisfied (this could also have been derived from : and ; being analytic
on I ). Function 8 thus meets all the requirements of the previous sections,
making it possible to develop the subblossoming principle, and conse-
quently the de Casteljau Chebyshev algorithm w.r. to any distinct points
a, b # I. Nevertheless, a dimension elevation process can be developed
exactly as in the case of Chebyshev functions (see [17, 19]). Therefore,
instead of working in the space E(8), it may be more efficient to take
advantage of the fact that E(8)/Pn&1+max(m1, m2) so as to use the classical
algorithms for polynomials. This will be illustrated in the particular case
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m1=m2 which will shall now focus on. So, in the following, given two
integers n, m, with n�2 and m�0, 8 will denote the quasi-Chebyshev
fonction of order n on I=[0, 1] defined by:

8(x) :=(81 (x), ..., 8n (x))T

:=(x, ..., xn&2, xn+m, (1&x)n+m)T, x # [0, 1]. (4.3)

We shall denote its blossom as usual by .=(.1 , ..., .n)T: I n � Rn. Let
60 , ..., 6n be its Chebyshev-Be� zier points with respect to (0, 1), i.e.,

6i :=.(0n&i, 1 i), i=0, ..., n. (4.4)

Clearly, this function 8 can also be viewed as a polynomial function of
degree n+m, that is, as an element of Pn

n+m . We can thus consider the
(n+m+1) Be� zier points of 8 (w.r. to (0, 1)). The following proposition
states how to construct them from its Chebyshev-Be� zier points 60 , ..., 6n .

Proposition 4.1. Let 6� 0 , ..., 6� n+m be the (n+m+1) Be� zier points of 8
viewed as a polynomial function of degree n+m. Then 6� 0=60 and
6� n+m=6n , while the points 6� 1 , ..., 6� n+m&1 are obtained by applying the
classical degree elevation process from degree n&2 to degree n+m&2,
starting from the Chebyshev-Be� zier points 61 , ..., 6n&1 .

Proof. Let us denote by .̂=(.̂1 , ..., .̂n)T: I n+m � Rn the ordinary
blossom of 8 considered as an element of P n

n+m . Then the Be� zier points
6� 0 , ..., 6� n+m are defined by:

6� i :=.̂(0n+m&i, 1i), i=0, ..., n+m. (4.5)

Of course, 6� 0=60=8(0) and 6� n+m=6n=8(1). Consider the polyno-
mial function of degree n+m, 1: I � Rn+m, defined by:

1(x) :=(11 (x), ..., 1n+m (x))T :=(8(x), xn&1, ..., xn+m&2)T. (4.6)

It is nondegenerate, in the sense that (1, 11 , ..., 1n+m) is a basis of Pn+m ,
or, equivalently, that its image spans Rn+m. Therefore, blossoms in the
space Pn+m can be obtained geometrically from 1 as follows. Any polyno-
mial function F of degree less than or equal to n+m can be uniquely writ-
ten as the image F=h b 1 of 1 under an affine map. The blossom f of F
then satisfies f =h b #, where # is the ordinary blossom of the polynomial
function 1. As for #, it satisfies

[#(x1 , ..., xn+m) ]= ,
r

i=1

Oscn+m&+i 1({i), (4.7)
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for all (n+m)-tuples (x1 , ..., xn+m) which are equal to ({1
+1, ..., {r

+r) up to
a permutation. In particular, if �: Rn+m � Rn denotes the projection onto
the first n components, we have:

8=� b 1, .̂=� b #. (4.8)

Let us introduce the polynomial function G: I � Rn+m of degree less than
or equal to n+m&2 obtained by fixing two variables in the blossom # of
1 as follows:

G(x) :=#(0, 1, xn+m&2), x # I. (4.9)

The ordinary blossom g is given by:

g(x1 , ..., xn+m&2)=#(0, 1, x1 , ..., xn+m&2). (4.10)

By its very definition, we have

[G(x)]=Oscn+m&1 1(0) & Oscn+m&1 1(1) & Osc2 1(x) for x{0, 1,

(4.11)

while G(0)=#(0n+m&1, 1), G(1)=#(0, 1n+m&1), i.e.,

[G(0)]=Osc1 1(0) & Oscn+m&1 1(1),
(4.12)

[G(1)]=Oscn+m&1 1(0) & Osc1 1(1).

We can thus write

G(x)=1(x)+*(x) 1 $(x)++(x) 1"(x), x # I, (4.13)

where, due to (4.12) and to the linear independence of the derivatives of 1,
+(0)=+(1)=0. Furthermore, for x # ]0, 1[, the two quantities *(x) and
+(x) are calculated so as to ensure that G(x) # Oscn&1 1(0) & Oscn&1 1(1).
Now, one can easily check that Xn&1=0 (resp. Xn=0) is a necessary and
sufficient condition for a point X :=(X1 , ..., Xn+m) # Rn+m to belong to the
osculating hyperplane Oscn+m&1 1(0) (resp. Oscn+m&1 1(1)). Therefore,
the (n&1)-th and n-th components of G(x) are equal to zero. Now, let us
consider the polynomial function F: I � Rn, of degree less than or equal to
n+m&2, defined by

F(x) :=� b G(x). (4.14)

Since 8=� b 1, it follows from (4.13) and (4.14) that:

F(x)=8(x)+*(x) 8$(x)++(x) 8"(x). (4.15)
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Again, one can check that Xn&1=0 (resp. Xn=0) is a necessary and suf-
ficient condition for a point X :=(X1 , ..., Xn) # Rn to belong to the osculat-
ing hyperplane Oscn&1 8(0) (resp. Oscn&1 8(1)). Now, the (n&1)-th and
n-th components of G(x) being equal to zero, it follows from (4.14) that the
(n&1)-th and n-th components of F(x) are also equal to zero. Conse-
quently,

F(x) # Oscn&1 8(0) & Oscn&1 8(1) & Osc2 8(x) for x{0, 1. (4.16)

Since the right hand side of (4.16) is reduced to the single point
.(0 , 1 , xn&2), F eventually proves to be the quasi-Chebyshev function of
order n&2 obtained by fixing two variables in the blossom . of 8 as
follows:

F(x)=.(0 , 1 , xn&2). (4.17)

According to the subblossoming principle, as a quasi-Chebyshev function
of order n&2 its blossom f is given by

f (x1 , ..., xn&2)=.(0, 1, x1 , ..., xn&2), (4.18)

and its Chebyshev-Be� zier points w.r. to (0, 1) are therefore the points

f (0n&2&i, 1i)=.(0n&1&i, 1i+1)=6i+1, i=0, ..., n&2. (4.19)

The last two components of F(x) being equal to 0, function F is actually
a polynomial function of degree less than or equal to n&2 with values in
Rn&2. Its blossom f is also the ordinary blossom for such functions, and its
Chebyshev-Be� zier points are its Be� zier points. On the other hand, on
account of (4.14), (4.9), and (4.8), function F can be written as:

F(x)=.̂(0 , 1 , xn+m&2). (4.20)

Through this latter equality, F is now being viewed as a polynomial func-
tion of degree less than or equal to n+m&2. The corresponding blossom
f� of F is given by f� (x1 , ..., xn+m&2) :=.̂(0, 1, x1 , ..., xn+m&2), and its
Be� zier points (w.r. to (0, 1)) are:

f� (0n+m&2&i, 1 i)=.̂(0n+m&1, 1i+1)=6� i+1, i=0, ..., n+m&2. (4.21)

This implies that the Be� zier points 6� 1 , ..., 6� n+m&1 of F considered as an
element of Pn&2

n+m&2 are obtained by applying a degree elevation process
from degree n&2 to degree n+m&2 starting from the Be� zier points
61 , ..., 6n&1 of F # Pn&2

n&2 . K
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From Proposition 4.1 we can derive the expression of the Chebyshev-
Bernstein basis, that is to say, of the optimal normalized totally positive
basis of the space E(8).

Corollary 4.2. Let us denote by (Bn+m
0 , ..., Bn+m

n+m) the Bernstein basis
of degree n+m. Then, the Chebyshev-Bernstein basis in the space E(8)
associated with the quasi-Chebyshev function 8 defined in (4.3) is given by:

B0 (x)=Bn+m
0 (x), Bn (x)=Bn+m

n+m (x),

Bi (x)= :
i+m

l=i

( l&1
i&1 )( n+m&l&1

n&i&1 )
( n+m&2

m )
Bl

n+m (x), i=1, ..., n&1, x # [0, 1].

(4.22)

Proof. Let P0 , ..., Pn be the Be� zier points of a polynomial function
F # Pd

n . Then, the Be� zier points of F considered as an element of Pd
n+1 are

given by the well-known degree elevation formulae:

Pn+1
0 =Pn

0 ,

Pn+1
i =

i
n+1

Pn
i&1+(1&

i
n+1

) Pn
i i=1, ..., n, Pn+1

n+1=Pn
n . (4.23)

By iteration of (4.23), it is easy to check that the Be� zier points of the same
function F viewed as an element of Pd

n+ pare, with the convention that
( q

r)=0 whenever q<r:

Pn+ p
i = :

n

k=0

( i
k)( n+ p&i

n&k )
( n+ p

p )
Pn

k , i=0, ..., n+ p. (4.24)

According to Proposition 4.1, the Be� zier points 6� 1 , ..., 6� n+m&1 therefore
satisfy:

6� i= :
n&1

k=1

( i&1
k&1)( n+m&i&1

n&k&1 )
( n+m&2

m )
6k , i=1, ..., n+m&1. (4.25)

Now, we know that

8(x)= :
n

i=0

Bi(x) 6i= :
n+m

l=0

Bn+m
l (x) 6� l , x # [0, 1]. (4.26)

Let us replace 6� 0 by 60 , 6� n+m by 6n , and the other 6� i 's by (4.25) in the
right hand side of (4.26). Due to the linear independence of the points
60 , ..., 6n , we obtain (4.22) by identification. K
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For a fixed integer n�2, let us set 8m (x) :=(x, ..., xn&2, xn+m, (1&x)n+m)T,
and consider m # N as a parameter. Given n+1 fixed points P0 , ..., Pn # Rd,
let F m be the E(8m)-function with Chebyshev-Be� zier points are P0 , ...,
Pn # Rd. Denoting by P� m

1 , ..., P� m
n+m&1 the points obtained by m consecutive

degree elevation processes from P1 , ..., Pn&1 , this function F m is also the
polynomial function of degree less than or equal to n+m with Be� zier
points P� m

0 , ..., P� m
n+m , where P� m

0 :=P0 , P� m
n+m :=Pn . Therefore, the curve

defined by F m can be drawn by applying the classical de Casteljau or sub-
division algorithm starting from the points P� m

i .
The parameter m acts as a shape parameter. For m=0, we obtain the

polynomial curve of degree n with P0 ...Pn as its control polygon. When m
goes to �, the polygon P� m

1 } } } P� m
n+m&1 converges towards the polynomial

curve C of degree n&2 with P1 } } } Pn&1 as its control polygon. Hence the
limit position of the curve defined by F m will be composed of C and the
two segments P0 P1 and Pn&1Pn . This is illustrated in Figs. 1 and 2.

FIG. 1. Curves in the space spanned by 1, x, x3+m, (1&x)3+m for m=0; 1; 10; 100.
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FIG. 2. Curves in the space spanned by 1, x, x2, x4+m, (1&x)4+m for m=0; 1; 10; 100.
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